Part-Aligned Bilinear Representations for Person Re-identification

Yumin Suh, Jingdong Wang, Siyu Tang, Tao Mei, Kyoung Mu Lee

Seoul National University, Microsoft Research Asia, Max Planck Institute for Intelligent Systems, University of Tübingen *JD AI Research

PROPOSED METHOD

Network architecture

- Training:
 - Pre-train the pose map extractor using the pose estimation dataset
 - Train the whole network to minimize the re-identification loss

Image-to-image similarity

Image similarity is the average of local feature similarities over every position pair:

\[
sim_{m}(I, I') = \frac{1}{25} \sum_{x,y} \sum_{x',y'} \sim_{p}(x,y,x',y') \sim_{a}(x,y,x',y')
\]

Local similarity is a product of local appearance and part similarity:

\[
sim_{l}(I, I') = \text{vec} \!(\text{vec}(\tilde{f}_{I}, \tilde{f}_{I'})) \approx < \tilde{a}_{xy}, \tilde{a}_{xy'} > < \tilde{p}_{xy}, \tilde{p}_{xy'} >
\]

From (1) and (2), image similarity becomes the average local appearance similarities at the corresponding body parts:

\[
sim_{m}(I, I') = \frac{1}{25} \sum_{x,y} \sum_{x',y'} s_{m}(x,y,x',y') s_{m}(x,y,x',y')
\]

Part-aligned feature by bilinear pooling of part and appearance feature maps

- Decomposes part & appearance using a two stream network
- Attention based
 - Learn attention with weak supervision
 - No explicit pose estimation

Related works

- Bounding-box based:
 - Crop bounding boxes around the parts of interests discovered from pose estimation
 - Hard to make detailed part discrimination

Introduction & Background

Person Re-identification Problem

- How can we identify the same person across different cameras reliably?

Challenge & Motivation

- Body part misalignment is a key challenge
- Part-aligned representation is necessary

Proposal/Main Idea

- New part-aligned feature (representation):
 - Decomposes part & appearance using a two stream network
 - Part-aligned feature by bilinear pooling of part and appearance feature maps

- Part-aware matching using part-aligned features:
 - Image-to-image similarity (matching) becomes the Average local app similarities at the corresponding body part

Visualization of the image-to-image similarity

- Comparison with baselines while varying dataset/architecture/pooling
- Comparison with the State-of-the-Arts

Experiments

- Our network successfully separates appearance and part information
- Code is available at: github.com/yuminsuh/part_bilinear_reid

INTRO & BACKGROUND

Person Re-Identification Problem

- How can we identify the same person across different cameras reliably?

Challenge & Motivation

- Body part misalignment is a key challenge
- Part-aligned representation is necessary

Related works

- Bounding-box based:
 - Crop bounding boxes around the parts of interests discovered from pose estimation
 - Hard to make detailed part discrimination

Proposal/Main Idea

- New part-aligned feature (representation):
 - Decomposes part & appearance using a two stream network
 - Part-aligned feature by bilinear pooling of part and appearance feature maps

- Part-aware matching using part-aligned features:
 - Image-to-image similarity (matching) becomes the Average local app similarities at the corresponding body part

Visualization of the image-to-image similarity

- Comparison with baselines while varying dataset/architecture/pooling
- Comparison with the State-of-the-Arts

Experiments

- Our network successfully separates appearance and part information
- Code is available at: github.com/yuminsuh/part_bilinear_reid