

Reweighted Random Walks for Graph Matching

Minsu Cho, Jungmin Lee, and Kyoung Mu Lee Department of EECS, ASRI, Seoul National University, Seoul, Korea

INTRODUCTION

Graph Matching Problem

- > Graph Matching for object recognition: Construct a graph using features from a image as nodes, relation between features as edge attributes
- > Find the correspondence or mapping between nodes of two graphs which best preserves attributes of both nodes and edges

Motivation

- Generally, numbers of nodes are different for two graphs. Some nodes could be outlier nodes
- > Due to object motion or viewpoint change, relationships between two nodes are not exactly same

Outlier Noise

Deformation Noise

Challenging NP-hard Problem

Contribution

- > A novel random walk view for graph matching
- > A state-of-the-art graph matching method robust to deform & outliers
- > Extensive comparison with recent graph matching methods

PROPOSED METHOD

- > Random walks on an association graph using candidate matches as nodes. Rank candidate matches by stationary distribution
- > Personalized jump for enforcing the matching constraints during the random walks process
- > Matching constraints satisfying reweighting vector is calculated iteratively by inflation and bistochastic normalization

Association Graph

Candidate correspondences become nodes in the association graph

Traditional Random Walks

> Traditional random walk approaches convert the affinity matrix to the row stochastic transition matrix

$$\mathbf{D}_{ii} = d_i = \sum_i \mathbf{W}_{ij}$$

$$P = D^{-1}W$$

$$\mathbf{x}^{(n+1)T} = \mathbf{x}^{(n)T}\mathbf{P}$$

Problematic: Normalization can strengthen the adverse effect of outliers and weak correspondences

> We tested this row-Normalized Random Walk method denoted as NRWM

PROPOSED METHOD

Affinity-Preserving Random Walks

- > How to preserve original affinities in the Markov chain?
- > Solution: A new Absorbing node is augmented
- \triangleright Absorbing node soaks affinity $d_{\max} d_i$ from the node V_i
- > A candidate match with more degree has more weight than other candidates

- \succ Stationary distribution can be acquired by taking principal eigenvector of ${f W}$
- > In our paper, proposed APRW is proven to be equivalent with Spectral Relaxation of Inter Quadratic Programming by Leordeanu & Hebert, ICCV05

Reweighting Random Walks

- > Problem: In affinity-preserving random walks, the matching constraints (1-to-1) are ignored
- Solution: Personalized Jump Haveliwala, Topic-sensitive pagerank, WWW02

$$\mathbf{x}^{(n+1)T}$$
 $x_{abs}^{(n+1)} = \alpha \left(\mathbf{x}^{(n)T} \quad x_{abs}^{(n)} \right) \mathbf{P} + (1 - \alpha) \mathbf{r}$

- Make reweighting vector satisfy the matching constraints using current state
- > Inflation: Strong candidates are amplified while weak candidates are attenuated
- Bistocastic-Norm: Make inflated 13 state to satisfy constraints Sinkhorn, Ann. Math. Statistics 64'

Inflation

Bistochastic Normalization

EXPERIMENTS

What f_C does:

Project Page Open

- > Full results are available: http://cv.snu.ac.kr/research/~RRWM
- > Source code will be available soon

Comparing with Various Methods

- SM: Leordeanu & Hebert, ICCV05
- SMAC: Cour et al, NIPS06
- IPFP: Leordeanu & Hebert, NIPS09

GAGM: Gold & Rangarajan, PAMI96

- HGM: Zass & Shashua, CVPR08
- SPGM: Wyk & Wyk, PAMI04
- NRWM: Conventional row-wise Normalized Random Walk Matching
- RRWM: Proposed method, Reweighted Random Walk Matching

Synthetic Random Graph Matching

- Generate two graphs with randomly assigned edge attributes
- Pair-wise distance: difference of two edge attributes
- Deformation, outlier nodes, and edge density are varying

Feature Point Matching across Image Sequences

- CMU house sequence
- 30 pts are manually tracked
- Pair-wise distance: difference of two distances between two points

Real Image Matching

- Caltech-101 & MSRC dataset
- MSER detector & SIFT descriptor
- Pair-wise distance: mutual projection error (Cho et al, ICCV09)

SM 12/24 (17010.9) SMAC 10/24 (19264.6) GAGM 10/24 (12466.3) Matching performance on the real image dataset (30 pairs)

Methods **GAGM** RRWM SM **SMAC** Avg. of accuracy (%) 52.08 58.74 39.74 64.01 Avg. of relative score (%) 100 91.13 82.41 59.35

More matching examples (Input pair / Initial Matches / Our Result)

