Visual Tracking via Geometric Particle Filtering on the Affine Group with Optimal Importance Functions

Junghyun Kwon¹, Kyoung Mu Lee¹, and Frank C. Park²

¹Department of EECS, ²School of MAE
Seoul National University, Korea
Affine Motion Tracking

Estimation of $p(X_k \mid y_{1:k})$ via \textit{particle filtering} (PF)

- Affine motion tracking \Rightarrow \textit{Non-linear filtering}

Particle filtering \Rightarrow Effective for non-linear filtering
Issues in Affine Motion Tracking via PF

- Adequate state representation

State space \rightarrow A set of 2-D affine matrices

$$\begin{bmatrix} G & t \\ 0 & 1 \end{bmatrix}$$

- Use of optimal importance function (OIF)

PF \rightarrow Sampling from the importance function

OIF is essential for robust tracking
Two Different State Representations

<table>
<thead>
<tr>
<th>State</th>
<th>Conventional</th>
<th>Geometric (Kwon et al, 2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>6-D vector by local coordinates</td>
<td>2-D Affine matrix itself as a Lie group (Aff(2))</td>
</tr>
<tr>
<td>State Equation</td>
<td>$x_k = f(x_{k-1}) + w_k$</td>
<td>$X_k = X_{k-1} \cdot \exp \left(A(X,t) \Delta t + dW_k \sqrt{\Delta t} \right)$</td>
</tr>
</tbody>
</table>

Ignores geometry of the underlying space

We take this Geometric approach!
Drawback of Conventional Approach

Toy example

\[X_{k-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[x_{k-1} = (1, 0, 0, 0, 1, 0)^T \]

\[X'_{k-1} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[x'_{k-1} = (2, 0, 0, 0, 2, 0)^T \]

\[x_k = x_{k-1} + w_k \]

\[x'_k = x'_{k-1} + w_k \]

State farther from I \(\rightarrow\) Need Larger perturbation \(\rightarrow\) Need more particles \(\rightarrow\) Inefficiency
For the same example

$$X_{k-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$X_{k-1}' = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$X_k = X_{k-1} \cdot \exp(dW_k)$$

$$X_k' = X_{k-1}' \cdot \exp(dW_k)$$

More efficient than the conventional approach

Affine motion tracking via Geometric PF on Aff(2)!
Remaining Issue: Use of OIF

Popular importance function $\Rightarrow p(X_k | X_{k-1})$

Direct sampling from the state equation

Simple but inefficient because of missing y_k

Optimal importance function $\Rightarrow p(X_k | X_{k-1}, y_k)$

Maintaining the largest number of effective particles

Increased effective particles \Rightarrow Increased performance
How to Use OIF in Practice

Difficulties in using OIF for Affine Motion Tracking

1. Only approximation to OIF is possible

2. Our state \(\Rightarrow 2\)-D affine group \(\text{Aff}(2) \)

Our contribution

- Approximation of OIF for \textit{geometric PF on Aff}(2)
- Consideration of the \textit{geometry of Aff}(2)
OIF Approximation for Vector State

- **Gaussian approximation** by (Doucet et al, SC2000)

Predicting $p(x_k, y_k | x_{k-1})$ by Jacobian of y_k w.r.t. x_k

$p(x_k | x_{k-1}, y_k)$ by correcting using y_k
Questions in OIF Approx. on Aff(2)

Q1. What is Gaussian on Aff(2)?

Q2. How to obtain Jacobian of y_k w.r.t. X_k?

Our answer

Use of exponential coordinates!
Geometric View to Affine Matrix

Affine matrix \rightarrow 2-D Affine group $\text{Aff}(2)$

Lie group \rightarrow Group + Differentiable manifold

Lie algebra \rightarrow Tangent space at the identity ($\text{aff}(2)$)

Exp: $\text{aff}(2) \rightarrow \text{Aff}(2)$
Log: $\text{Aff}(2) \rightarrow \text{aff}(2)$
Local Diffeomorphism of Exp Map

Local diffeomorphism of Exp: aff(2) → Aff(2)

One-to-one and onto sufficiently near the identity
Exponential Coordinates

- By **local diffeomorphism** of Exp map

\[X = \exp \left(\sum_{i=1}^{6} u_i E_i \right) \rightarrow (u_1, \ldots, u_6)^T \]

- Neighborhood of \(\text{Aff}(2) \)

\[Y(u) = Y \cdot \exp \left(\sum_{i=1}^{6} u_i E_i \right) \]
A1. Gaussian on Aff(2)

Motivation ➔ Gaussian is *well defined on* \(\text{aff}(2) \)!

\[N_{\text{Aff}(2)}(X, S) \Rightarrow \text{Exponential of Gaussian on } \text{aff}(2) \]

\[
X \cdot \exp \left(\sum_{i=1}^{6} \varepsilon_i E_i \right), \quad \varepsilon = (\varepsilon_1, \ldots, \varepsilon_6)^T \sim N(0, S)
\]

Constraint ➔ *Sufficiently small* \(S \)
A2. Measurement Jacobian

- Taylor expansion on $\text{Aff}(2)$ by *Exp coordinates*

$$y_k = g(X_k) + n_k$$
$$\approx g(X_k) + J \cdot u + n_k$$

$$J_i = \left. \frac{\partial g(X_k(u))}{\partial u_i} \right|_{u=0}$$

*\(J \) with respect to the *exponential coordinates*

*\(J \) of *PCA-based measurement* by the *chain rule*

$$y_k = h(I(w(p; X_k))) + n_k = \left(\sum_{i=1}^{M} \frac{c_i^2}{\lambda_i} \right) + n_k$$
OIF Approximation on Aff(2)

\[X_k = X_{k-1} \cdot \exp \left(A(X, t) \Delta t + dW_k \sqrt{\Delta t} \right) \]

\[f(X_{k-1}) = X_{k-1} \cdot \exp (A(X, t) \Delta t) \]

Prediction by \(J \)

\[\text{Exp} \]

\[p(X_k \mid X_{k-1}) \approx N_{\text{Aff}(2)} \left(f(X_{k-1}), P \Delta t \right) \]

Correction

\[\text{Exp} \]

\[p(X_k \mid X_{k-1}, y_k) \approx N_{\text{Aff}(2)} \left(m_k, \Sigma_k \right) \]
Experiment 1

Geometric approach vs Conventional approach

Our tracker vs Tracker of (Ross et al, IJCV 2008)

Same measurement, Same importance function

3x speed playback 2x speed playback
Experiment 2

🔥 Approx. OIF vs State prediction density

Our tracker with Approx. OIF vs with \(p(X_k | X_{k-1}) \)

Same # of particles, Same covariance for \(dW_k \)
Experiment 2

Approx. OIF vs State prediction density

<table>
<thead>
<tr>
<th>Importance function</th>
<th>Cube</th>
<th>Vase</th>
<th>Toy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approx. OIF</td>
<td>43.43</td>
<td>13.69</td>
<td>15.69</td>
</tr>
<tr>
<td>$p(X_k</td>
<td>X_{k-1})$</td>
<td>18.12</td>
<td>8.37</td>
</tr>
</tbody>
</table>

Number of effective particles

$\left[\sum (w^{(i)}_k)^2 \right]^{-1}$
Conclusions

- **Geometric framework** to approx. OIF for PF on Aff(2)

 - Use of Exponential coordinates
 - Approx. Gaussian and Taylor expansion on Aff(2)

- **Experimental validation**

 - Efficiency of geometric PF on Aff(2)
 - Efficiency of OIF for geometric PF on Aff(2)
Thanks for your attention!

http://cv.snu.ac.kr
Additional Slides
Conventional Approach

6-D Vector representation using local coordinates

Via Euclidean Embedding

\[X = \begin{bmatrix} G & t \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow x = (a_1, \ldots, a_6)^T \in \mathbb{R}^6 \]

Via Singular Value Decomposition

\[G = \text{Rot}(\phi_1)\text{Rot}(-\phi_2)\begin{bmatrix} s_1 & 0 \\ 0 & s_2 \end{bmatrix}\text{Rot}(\phi_2) \]

\[\rightarrow x = (\phi_1, \phi_2, s_1, s_1/s_2, a_3, a_6)^T \in \mathbb{R}^6 \]
Physical Illustration

X_{k-1} X_k

X'_{k-1} X'_k

X_0 X'_0

Camera
Explicit representation to apply the chain rule

\[y_k = h(I(w(p; X_k))) + n_k = \left(\sum_{i=1}^{M} \frac{c_i^2}{\lambda_i} \right) + n_k \]

Initial coordinates

- **PCA-based Measurement**

- \(X_k = \begin{bmatrix} G & t \\ 0 & 1 \end{bmatrix} \)

- **DFFS**

- **DIFS**

- **k-th frame**
Application of the Chain Rule

Straight-forward application and calculation

Derivative of DFFS and DIFS

\[J_i = \left. \frac{\partial g(X(u))}{\partial u_i} \right|_{u=0} = \frac{\partial h}{\partial I} \cdot \frac{\partial I}{\partial w} \cdot \frac{\partial w}{\partial X(u)} \cdot \left. \frac{\partial X(u)}{\partial u_i} \right|_{u=0} \]

Derivative of warping function

Image gradient

\[X_k E_i \]

Now OIF approximation for PF on Aff(2) possible!
Derivative of PCA Term

Derivative of DFFS term

\[
e^2 = \sum_p (I(p) - \overline{T}(p))^2 - \sum_{i=1}^M c_i^2
\]

\[
\frac{\partial e^2}{\partial I(p)} = \sum_p \left(2(I(p) - \overline{T}(p)) - \sum_{i=1}^M 2c_i b_i(p)\right)
\]

Derivative of DIFS term

\[
\frac{\partial}{\partial I(p)} \frac{\sum_{i=1}^M c_i^2}{\lambda_i} = \sum_p \left(\sum_{i=1}^M \frac{2c_i}{\lambda_i} b_i(p)\right)
\]
Approx. OIF for PF on Aff(2)

Prediction and Correction

| Step 1 | Prediction of \(p(X_k, y_k | X_{k-1}) \) by \(J \) |
|---|---|
| \(\mu_1 = f(X_{k-1}) \) | \(\Sigma_{11} = Q = P \Delta t, \Sigma_{12} = QJ^T \) |
| \(\mu_2 = g(f(X_{k-1})) \) | \(\Sigma_{22} = JQJ^T + R \) |

| Step 2 | \(p(X_k | X_{k-1}, y_k) \) by correction |
|---|---|
| \(\bar{u} = \Sigma_{12} \Sigma_{22}^{-1} (y_k - \mu_2) \) |
| \(N_{Aff(2)}(m_k, \Sigma_k) \) | \(m_k = \mu_1 \cdot \exp \left(\sum_{i=1}^{6} u_i E_i \right) \) |
| \(\Sigma_k = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{12}^T \) |