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Figure 1. (a) and (b) are the left and right Tsukuba images contam-
inated by Gaussian noise with mean 0 and standard deviation 10.
(c) is the disparity map of BT data cost [3] with belief propaga-
tion (BP) for the noise-free Tsukuba image pair. (d) is the disparity
map of BT data cost with BP for the noisy Tsukuba image pair in
(a) and (b). (e) is the disparity map of our algorithm for the noise-
free Tsukuba image pair. (f) is the disparity map of our algorithm
for the noisy Tsukuba image pair in (a) and (b).

input stereo images I = fIL; IRg, the goal is to �nd dis-
parity maps f = ffL; fRg. Using the Bayesian rule, we
have

p(f jI) =
p(Ijf)p(f)

p(I)
: (1)

And the optimal disparity values that maximize eq. (1) can
be formulated by the following MAP framework.

fopt = arg max
f

p(f jI) = arg max
f

p(Ijf)p(f)

p(I)
; (2)

where p(I) is constant, so that we can neglect it. The re-
lationship between energy (E) and probability (P ) can be
represented by the Gibbs distribution,

P / e−kE : (3)

Hence, the maximum a posteriori problem becomes equiv-
alent to the minimization problem of following energy.

E(f jI) =
X

p

Dp(fp) +
X

p

X

q∈N(p),p6=q

V (fp; fq); (4)

(a) Tsukuba (b) Venus
Figure 2. Noise in the Tsukuba and Venus image

where N(p) is the neighborhood pixels of p. Dp(fp) is the
data cost that measures the cost when pixel p is assigned by
label fp. V (fp; fq) is the discontinuity cost that accounts
for the prior knowledge that the world consists of piece-
wise smooth objects. Combining these costs, therefore, the
optimal disparities can be found by minimizing the total en-
ergy in eq. (4) by an inference algorithm such as belief
propagation [17] and graph cuts [4].

3. Weakness of previous models for noise

Almost all pixel-to-pixel based data costs such as AD
(Absolute Difference), truncated AD [16], and BT (Birch-
�eld and Tomasi) [3] assume that corresponding intensi-
ties are consistent, on the basis of the L1 intensity differ-
ence. Various window-based methods such as SSD, SAD
and adaptive window methods [9, 18], and various segment-
based methods [7, 8] aggregate pixel-wise L1 or L2 differ-
ences in a proper window as the data cost. In general, noise
affect the accuracy of these data costs severely as the vari-
ance of noise grows unless the noise of each pixel is elimi-
nated. If we assume that the noise of each pixel is Gaussian,
then the observed intensities in the left and right noisy im-
ages can be written as

IL = SL + nL; IR = SR + nR; (5)

where S = fSL; SRg is the noise-free intensity values,
n = fnL; nRg is the Gaussian noises with mean zero and
standard deviations � = f�L; �Rg. Let us denote the inten-
sity value at a pixel p in the left image to be IL(p). If we
assume that the pixel p has true disparity fp, then the cor-
responding intensity in the right image will be IR(p + fp).
The expected value of L2 error between the two intensities
can be calculated by

E[jIL(p) � IR(p + fp)j
2]

= E[jSL(p) + nL(p) � SR(p + fp) � nR(p + fp)j
2]

= (SL(p) � SR(p + fp))
2 + �2

L + �2
R:

(6)





the �rst N highly weighted pixels among them. We de-
note this subset as TL(p) and call it as the support point
set for the pixel p in the left image. To fully utilize the re-
dundancy in two images, we warp all pixels in TL(p) to the
right image according to f , and denote the corresponding
set in the right image as TWR(p) and call it as the warped
support point set. If two pixels p 2 IL and p + fp 2 IR are
the exact corresponding pixels, the restored value SL,p(fp)
using both TL(p) and TWR(p) would have less noise than
using TL(p) only. Thus, let us de�ne the restored intensity
at p 2 IL to be the weighted average of all the pixels in both
TL(p) and TWR(p) as follows.

SL,p(fp) =
1

2

X

tl ∈TL (p)

w(p; tl)IL(tl)

+
1

2

X

tr ∈TW R (p)

w(p; tr)IR(tr):

(11)

Similarly and symmetrically, the restored value of pixel p+
fp 2 IR is de�ned by

SR,p+fp (fp) =
1

2

X

tr ∈TR (p+fp )

w(p + fp; tr)IR(tr)

+
1

2

X

tl ∈TW L (p+fp )

w(p + fp; tl)IL(tl):

(12)

Now, the difference of the two corresponding restored in-
tensity values at p 2 IL and p + fp 2 IR with given fp can
be de�ned by

∆S(p; fp) =
�
�SL,p(fp) � SR,p+fp (fp)

�
� : (13)

We note that if fp is correct, then

∆S(p; fp) � jSL(p) � SR(p + fp)j � 0:

Thus, the minimization of the restored intensity difference
in eq. (13) can lead us to achieve both image denoising and
correct stereo matching.

4.2. Non-local pixel distribution dissimilarity

In the previous subsection, we have constructed the sup-
port point set TL(p) for pixel p 2 IL and TR(p + fp) for
pixel p+fp 2 IR that have non-local pixel distributions. We
note that if fp is correct, then the geometric con�gurations
of TL(p) and TR(p+fp) will be similar. Thus, the similarity
of the geometric con�gurations of these two support point
sets also can be a good measure for how well the two pixels
p and p + fp correspond to each other. In general, Haus-
dorff distance (HD) is known to be an effective and popular
metric for the dissimilarity measure between two point sets.
However, the limitation of the conventional HD is that it
considers the distance between two points only regardless

(a) TL(p) for pixel
p = (150; 150)

(b) TR(p + fp) , fp = 0,
PMHD = 4.9

(c) TR(p + fp) , fp = 5,
PMHD = 12.7
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PMHD = 0.3

Figure 4. (a) The distribution of support points for pixel p =
(150; 150) in the Tsukuba left image, and (b),(c),(d) show the dis-
tributions of support points and the corresponding PMHD values
for pixel p + fp in the Tsukuba right image when fp = 0; 5; 10,
respectively. At correct disparity fp = 10, the geometric config-
urations of TL(p) and TR(p + fp) becomes almost the same and
the corresponding PMHD value is minimum.

of the weight or mass of each point. Thus, in our case, since
each pixel in a support point set has its own weight, the
conventional HD does not work properly. Recently, PMHD
(Perceptually Modi�ed Hausdorff Distance) [13] has been
proposed which accounts for the weight of each point in the
sets. Adopting this PMHD measure, we can calculate the
dissimilarity between two weighted support point sets of

TL(p) = f(tl; w(p; tl))jl = 1; ::::; Nlg ;

TR(p + fp) = f(tr; w(p + fp; tr))jr = 1; :::; Nrg :
(14)

by
DH(TL(p); TR(p + fp))

= Max fdH(TL(p); TR(p + fp) );

dH(TR(p + fp); TL(p))g;

(15)

where dH(�; �) is the directed PMHD de�ned by

dH(TL(p); TR(p + fp))

=

P

l

h
w(p; tl) � min

r

d(tl ,tr )
min(w(p,tl ),w(p+fp ,tr ))

i

P

l

w(p; tl)
;

(16)






