
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2008, Article ID 183804, 11 pages
doi:10.1155/2008/183804

Research Article
DOOMRED: A New Optimization Technique for Boosted
Cascade Detectors on Enforced Training Set

Dong Woo Park1 and Kyoung Mu Lee2

1 Information & Technology Laboratory, LG Electronics Institute of Technology, 16 Woomyeon-dong, Seocho-gu, Seoul 137-724, Korea
2 Department of Electrical Engineering, ASRI, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-742, Korea

Correspondence should be addressed to Kyoung Mu Lee, kyoungmu@snu.ac.kr

Received 31 August 2007; Revised 27 December 2007; Accepted 19 February 2008

Recommended by Olivier Lezoray

We propose a new method to optimize the completely-trained boosted cascade detector on an enforced training set. Recently,
due to the accuracy and real-time characteristics of boosted cascade detectors like the Adaboost, a lot of variant algorithms have
been proposed to enhance the performance given a fixed number of training data. And, most of algorithms assume that a given
training set well exhibits the real world distributions of the target and non-target instances. However, this is seldom true in real
situations, and thus often causes higher false-classification ratio. In this paper, to solve the optimization problem of completely
trained boosted cascade detector on false-classified instances, we propose a new base hypothesis weight optimization algorithm
called DOOMRED (Direct Optimization Of Margin for Rare Event Detection) using a mathematically derived error upper bound
of boosting algorithms. We apply the proposed algorithm to a cascade structured frontal face detector trained by AdaBoost
algorithm. Experimental results demonstrate that the proposed algorithm has competitive ability to maintain accuracy and real-
time characteristic of the boosted cascade detector compared to those of other heuristic approaches while requiring reasonably
small amount of optimization time.
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1. INTRODUCTION

Recently, the boosted cascade detector [1] became the most
popular method for an object detection in computer vision.
Due to its accuracy and real-time characteristic, many works
have been proposed to enhance the original one [2–4].
However, most researches on the boosted cascade detector
have concentrated on the learning problem for a fixed
number of initial training data. The basic assumption made
in the researches is that the distributions of the target and
nontarget objects obtained from the given fixed number
of initial training data are good enough to reflect the real
distributions, which is seldom true in practice. This is
because it is almost impossible to know the exact distribution
of the target as well as nontarget instances in real situations.
As a result, the detector trained with the fixed number
of initial training data cannot work properly in the real
applications.

The problem we would like to address in this paper
is “what should be done to a completely trained object

detector when false-classified instances occur in the real
applications?” More specifically, the key issue can be stated
as “how can we enhance the detection rate with the false-
rejected instances while maintaining the false positive rate
to be low?” We call this problem as the “optimization on
the enforced training set.” To the best of our knowledge,
there has been no report in literature on this problem for the
case of boosted detector. Note that, for the boosted cascade
detector, this problem is not easy to solve for several reasons.
First, in boosting algorithms, selection of the base hypothesis
and its weights are executed in sequential fashion based
on some implicit conditions, so there is no explicit rule to
modify the completely trained detector. Second, because of
the huge amount of computational time for the training,
retraining the cascade detector is impractical. Third, in a
cascade structured detector, most of the target instances
should not be rejected by any single layer in it. So, in case
false-rejected target instances are enforced, a simple heuristic
solution such as lowering the threshold of each layer will
increase the false positive rate at each layer exponentially,
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resulting overall great amount of computational burden in
real applications.

To overcome these difficulties, the optimization algo-
rithm for a boosted cascade detector on an enforced training
set needs the following three conditions:

(1) an explicit optimization rule guaranteed by the math-
ematical background,

(2) less optimization time than the time for the retraining,
(3) low false positive rate while maintaining the expected

detection rate for a given target training set.

In this paper, we propose a fast algorithm called DOOM-
RED (direct optimization of margin for rare event detection)
that optimizes the base hypothesis weight set of each single
layer detector in a boosted cascade detector, especially when
the false-rejected target instances are enforced. Note that, in a
boosting algorithm, the base hypothesis selection procedure
from the large candidate base hypothesis set usually demands
high-computational cost. This is the reason why we focus on
the optimization of the base hypothesis weight set for the
performance enhancement of a boosted cascade detector. In
this respect, DOOMRED may be categorized as a kind of
back-fitting which is a well-known optimization algorithm
in the machine learning field [5].

2. BOOSTING ALGORITHM

Boosting is a well-known machine learning method that
constructs a binary classification rule from certain training
data set. The basic idea of a boosting algorithm is somewhat
simple though clear such that an ensemble combination of
multiple base hypotheses makes one strong hypothesis. The
base hypothesis means a classification rule which has slightly
better accuracy than random choice on a given training data
set, which has error slightly less than 0.5. Meanwhile, the
strong hypothesis indicates a classification rule that has high
accuracy on the given training data set. Because constructing
a highly accurate classification rule at one try is hard, a
boosting algorithm constructs one accurate classification
rule by combining multiple classification results from several
base hypotheses. At this point, two important issues will
be what base hypotheses to select from abundant candidate
base hypothesis set, and how to combine them to make one
accurate classification rule. In a learning procedure, both the
training data set S and the candidate base hypothesis set H
should be predefined. Then, for T iterations, corresponding
base hypotheses h ∈ H are selected sequentially from the
candidate base hypothesis set H by updating the weight
distribution of the training instances contained in S using an
implicit cost function. The merit of the boosting algorithm
is that the selection procedure of the base hypothesis can
compensate the performance of the previously selected base
hypotheses. If an instance is classified correctly by the
base hypothesis selected in previous iteration, its weight
decreases and vice versa. By updating the importance of each
instance for every iteration, a base hypothesis that has good
accuracy on instances not correctly classified by previously
selected base hypothesis is selected. After T iterations, T base
hypotheses are selected and the final classification rule is

obtained by a linear combination (or ensemble combination)
of T base hypotheses. The final outcome of the boosting
algorithm is a binary classification rule f (x) on the test
instance x, which is labeled by y ∈ {−1, 1} as shown in (1)
where

∑T
i=1wi = 1,wi > 0,hi(x) ∈ {−1, 1}. We limit our

work in the range of boosting algorithms which deal with
hypotheses h having only binary outputs −1 and 1:

f (x) =
T∑

i=1

wihi(x) =
{
≥ θT , x ∈ class 1 (target),

< θT , x ∈ class 2 (non-target).

(1)

Note that each of the finally selected base hypothesis hi
corresponds to a basis of the feature space where instances
are distributed, and the set of T base hypotheses’ weight
set is a gradient of a linear decision boundary. For this
reason, the training procedure of a boosting algorithm can
be interpreted as “data dimension reduction,” that is selecting
base hypotheses which makes the distribution of class 1 (y =
−1) and class 2 (y = 1) instances in feature space separable
with a linear decision boundary.

When f (x) is used as a general binary classifier, the
threshold θT = 0. However, when f (x) is used as a rare-event
detector such as a frontal face detector, θT is usually set in the
range −1 < θT ≤ 0. This is to guarantee the detection rate of
f (x) to be a specific goal value.

3. SINGLE LAYER DETECTOR OPTIMIZATION

3.1. Problem statement

Note that our problem is how to optimize the classification
rule f (x) when false classified instances in real application
are added to the original training data set used in a
forward training procedure. In detection problem, usually
the number of nontarget object instances in real world is far
larger than that of target object instances. So, the detection
problem is often referred as “rare event detection” problem
to indicate this situation. And, in general, a high detection
rate results in a high false positive rate and vice versa.
When constructing a detection rule, the way decreasing
the false positive rate sacrificing detection is not used.
This is because the detection rule with low detection rate
is meaningless. As a result, the objective of constructing
a detection rule may be defined as minimizing the false
positive rate while fixing the detection rate to a specific
goal value. In a cascade detector [1], usually, instances
rejected by any subdetector in cascade are rejected forever for
fast detection speed. Although the cascade detector is very
appropriate for fast detection speed, this model is very hard
to arrange when some false classified instances, especially
false classified target instances, are enforced. To make a
cascade detector to have a specific goal detection rate even
when enforced target instances are added to the original
training data set, every subdetector in cascade should be
arranged not to lose enforced target-object instances. There
are two heuristic solutions to this problem. First one is
to simply retrain the whole cascade detector. The only
remaining problem of it is that training cascade detector with
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Figure 1: (a) Mean-shifted sigmoid function in (13) when θ = 0.5.
(b) Digitized version of (a) when the margin is segmented in the
size 0.25.

a boosting algorithm when large training set is given requires
substantially long training time. To train a boosted frontal
face cascade detector, the size of training data set should
be about several ten thousands because training set should
include all instances that represents the face’s large variance
in appearance. For the frontal face detection problem, the
training time for a cascade detector is minimally about
several days using the fastest source codes such as OpenCV
and maximally several weeks [1]. So, retraining cascade
detector for every time when some instances are enforced
is impractical. Second heuristic solution is to adjust the
threshold θT of each subdetector to make each one satisfies
the specific goal detection rate as in (1). One obvious
drawback of this approach is that the solution also increases
the false positive rate exponentially. This will result in
decreasing the detection speed of the whole cascade detector
in real applications.

To overcome the shortcomings of the two heuristic
solutions, in this work, we proposed a new optimization
method for subdetectors in a boosted cascade detector
that can minimize the false positive rate while maintaining
the goal detection rate in reasonably small amount of
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Figure 2: The ROC curves of the single layer detectors when the
detector is initially trained with (a) 1000 (b) 2000 (c) 3000 target
instances.
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Figure 3: The ROC curves of the single layer detectors when the
detector contains (a) 3 (b) 100 (c) 200 base hypotheses.

optimization time. Our basic idea is to optimize the decision
boundary of each subdetector only. The reason is that the
most portion of training time of the boosting algorithm
comes from base hypothesis selection procedure. Sections 3.2
and 3.3 describe a mathematically derived optimization rule
and an optimization algorithm that we propose.

3.2. Optimization rule

In this section, an upper bound on test error of the
classification rule f (x) in (1) is derived in a more generalized
form than the work in [6]. Based on the derived equation, the
factors that affect the accuracy of the boosted detector may
be extracted. Then, by adjusting the controllable factors, the
boosted detector can be optimized on the enforced training
set.

Since the AdaBoost algorithm was proposed [7], it has
been shown from the subsequent experiments that the
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Figure 4: The ROC curves of the single layer detectors when the
number of (a) 10 (b) 20 (c) 40 false rejected target instances are
enforced.
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Figure 5: The optimization time for the case in (a) Figure 2, (b)
Figure 3, (c) Figure 4.

gap between the training error and test error decreases
as the number of selected base hypotheses increases
even after the training error reached to zero. These
results show that the AdaBoost algorithm does not fit
to the basic machine learning theory, Occam’s razor,
saying that the classification rule should be as simple
as possible to minimize the gap between the training
error and test error. To explain this phenomenon, the
upper bound on error of voting methods such as the
AdaBoost algorithm has been derived mathematically in
[6].

However, the upper bound derived in [6] works only for
the general binary classification problem, when θT = 0 in (1).
To make the upper bound on error of the boosting algorithm
applicable even for the rare-event detection problem (when
−1 < θT ≤ 0), we derive a more generalized error upper
bound in Theorem 1. So, (2) can be used as an upper bound
of the false positive rate in real applications when θT is tuned
in the range −1 < θT ≤ 0 to get a specific goal detection
rate. The proof is given after Theorem 1 following the similar
procedure in [6].

Theorem 1. Let P be a distribution over (x, y), y ∈ {−1, 1},
and let S be a set of k examples chosen independently at random
according to P. Assume that the base hypothesis space H is
finite, and let δ > 0. Then with the probability of at least
1 − δ over the random choice of the training set S, every
function f made as a combination of h ∈ H satisfies the
following bound for all −1 < θT ≤ 0, 0 < θ < 1, and
0 < −θT + θ < 1:

PrP
[
y f (x) ≤ −θT

] ≤ PrS
[
y f (x) ≤ −θT + θ

]

+O
(

1√
k

(
log k log |H|

θ2
+ log

(
1
δ

))1/2)

.

(2)

Proof. For the sake of the proof, we define CN to be the set of
unweighted average over N elements from H :

CN =
{

f : x �→ 1
N

N∑

i=1

hi(x) | hi ∈ H
}

. (3)

We allow the same h ∈ H to appear multiple times in the
sum. This set will play the role of the approximating set in
the proof.

Any majority vote classifier f ∈ C can be associ-
ated with a distribution over H as defined by the coef-
ficients wi. By choosing N elements of H independently
at random according to this distribution, we can gen-
erate an element of CN . Using such a construction, we
map each f ∈ C to a distribution Q over CN . That
is, a function g ∈ CN distributed according to Q is
selected by choosing h1, . . . ,hN independently at random
according to the coefficients wi and defining g(x) =
(1/N)

∑N
i=1hi(x).

Our goal is to upper bound the generalization error of
f ∈ C. For any g ∈ CN and θ > 0, we can separate this
probability into two terms:
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PrP
[
y f (x) ≤ −θT

]

≤ PrP

[

yg(x) ≤ θ

2

]

+ PrP

[

yg(x) >
θ

2
, y f (x) ≤ −θT

]

.

(4)

This holds because, in general, for two events A and B,

Pr[A] = Pr[B ∩ A] + Pr[B ∩ A] ≤ Pr[B] + Pr[B ∩ A].
(5)

As (4) holds for any g ∈ CN , we can take the expected value
of the right-hand side with respect to the distribution Q and
get

PrP
[
y f (x) ≤ −θT

]

≤ PrP,g∼Q

[

yg(x) ≤ θ

2

]

+ PrP,g∼Q

[

yg(x) >
θ

2
, y f (x) ≤ −θT

]

= Eg∼Q

[

PrP

[

yg(x) ≤ θ

2

]]

+ EP

[

Prg∼Q

[

yg(x) >
θ

2
, y f (x) ≤ −θT

]]

.

(6)

We bound both terms in (6) separately, starting with the
second term. Consider a fixed example (x, y) and take the
probability inside the expectation with respect tothe random
choice of g. It is clear that f (x) = Eg∼Q[g(x)]. So, the
probability inside the expectation is equal to the probability
that the average over N random samples from a distribution
over {−1, +1} is larger than its expected value by more than
θ/2. The Chernoff bound yields

Prg∼Q

[

yg(x) >
θ

2
| y f (x) ≤ −θT

]

≤ exp
(

− Nθ2

8

)

. (7)

To upper bound the first term in (7) we use the union
bound. That is, the probability over the choice of S that there
exists any g ∈ CN and θ > 0 for which

PrP

[

yg(x) ≤ θ

2

]

> PrS

[

yg(x) ≤ θ

2

]

+ εN (8)

is at most (N + 1)|CN | exp(−2mεN 2). The exponential term
exp(−2mεN 2) comes from the Chernoff bound which holds
for any single choice of g and θ. The term (N + 1)|CN | is an
upper bound on the number of such choices where we have
used the fact that, because of the form of functions in CN ,
we need only to consider values of θ of the form 2i/N for
i = 0, . . . ,N . Note that |CN | ≤ |H|N .

Thus, if we set εN = √
(1/2m) ln((N + 1)|H|N/δN ), and

take expectation with respect to Q, we get with probability at
least 1− δN ,

PrP,g∼Q

[

yg(x) ≤ θ

2

]

≤ PrS,g∼Q

[

yg(x) ≤ θ

2

]

+ εN (9)

for every choice of θ and every distribution Q.
To finish the argument we relate the fraction of the

training set on which yg(x) ≤ θ/2 to the fraction on which

y f (x) ≤ −θT + θ, which is the quantity that we measure.
Using (5) again, we have that

PrS,g∼Q

[

yg(x) ≤ θ

2

]

≤ PrS,g∼Q
[
y f (x) ≤ −θT + θ

]

+ PrS,g∼Q

[

yg(x) ≤ θ

2
, y f (x) > −θT + θ

]

= PrS
[
y f (x) ≤ −θT + θ

]

+ ES

[

Prg∼Q

[

yg(x) ≤ θ

2
, y f (x) > −θT + θ

]]

.

(10)

To bound the expression inside the expectation we use the
Chernoff bound as we did for (7) and get

Prg∼Q

[

yg(x) ≤ θ

2
| y f (x) > −θT + θ

]

≤ exp
(

− Nθ2

8

)

.

(11)

Let δN = δ/(N(N + 1)) so that the probability of failure
for any N will be at most

∑
N≥1δN = δ. Then combining (6),

(7), (9), (10), and (11), we get that, with probability at least
1− δ, for every θ > 0 and every N ≥ 1,

PrP
[
y f (x)≤−θT

] ≤ PrS
[
y f (x)≤−θT+θ

]
+2 exp

(

− Nθ2

8

)

+

√
√
√ 1

2m
ln
(
N(N + 1)2|H|N

δ

)

.

(12)

Finally, the statement of the theorem follows by setting 
N =
(4/θ2) ln(m/ ln |H|)�.

PrP[A] and PrS[A] denote the probabilities of the event
A when (x, y) is chosen according to P and uniformly
at random from the set S, respectively. Above Theorem 1
verifies that factors that affect the upper bound on test error
does not vary when θT = 0 or −1 < θT ≤ 0. Now, the four
variables that can affect the upper bound on test error of f (x)
can be summarized as follows:

|H|: the size of the candidate base hypothesis set,
k: the size of the training data set,
PrS[y f (x) ≤ −θT + θ]: the portion of nontarget
training instances whose margin is under θ,
θ: the goal marginal value.

Let us examine how those four factors affect the upper
bound on error of the initially trained f (x) when some
false-classified training instances are enforced. First, |H| is
unchanged. Second, k is increased resulting in the lower
upper bound on test error. Finally, PrS[y f (x) ≤ −θT +θ] and
θ remain as two controllable factors. Thus, an optimization
rule can be derived as a conclusion: to minimize the test false
positive rate when θT is adjusted to set the detection rate
to a specific goal value, maximize the number of nontarget
training instances whose margin y f (x) + θT are larger than
the specific θ while maximizing θ, too. This suggests a rule
for the optimization of the base hypothesis weight set of the
single layer detectors in a boosted cascade detector.
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3.3. DOOMRED

In this section, we propose a simple and fast algorithm
DOOMRED that optimizes the base hypothesis weight set
W = {w1, . . . ,wT} of f (x) in such a way to maximize the
number of nontarget training instances whose margins are
above a specific θ value. Algorithm 1 shows the pseudocode
of DOOMRED. In [8], an algorithm named DOOM is
introduced. DOOM optimizes the base hypothesis weight
set W = {w1, . . . ,wT} to minimize the cost function of
the margins of the training instances. This optimization
process results in the minimization of the classification error.
However, DOOM cannot be directly applied to the detection
problem. The reason is that basically DOOM is a two-
class classification algorithm, and moreover it deals with the
entire training instances of both classes in its optimization
process. Since there are absolutely large amount of nontarget
instances than that of target instances in rare-event detection
problem, DOOM might show worse performance, especially
low detection rate, when it is used for a rare-event detector.
To solve this problem, we design the DOOMRED algorithm
in which the target and the nontarget instances are dealt with
separately in the optimization process.

DOOMRED is designed by adopting a simple steepest-
gradient descent method. It is to guarantee the simplicity
of the algorithm to minimize the computational burden for
the optimization. Although DOOMRED only modifies the
weights of the base hypotheses, there are great amount of
training instances to deal with, which might result in a great
amount of optimization time.

Before the optimization procedure, we need to define
a marginal cost function to be minimized, that should
be a monotonically decreasing function defined in the
range from −1 to a specific θ value. The mean shifted
sigmoid function in (13) and Figure 1 is an example. It
represents the importance of each training instance during
the optimization procedure:

Cθ(m) = 1
1 + exp

(
a× (m− (θ − 1)/2)

) , where a > 0.

(13)

In DOOMRED, first, among the target and nontarget
instances contained in the target training set SP and the
nontarget training set SN , the instances whose margins are
under the predefined θP and θN are classified into the sets EP
and EN , respectively. The training instances contained in EP
and EN only affect the modification of the base hypothesis
weight set W . Then each base hypothesis weight wi ∈ W
is modified to increase the margin of instances both in EP
and EN . wi is increased if it decreases the summation of the
marginal cost function Cθ(m) (cost (W)) of the instances
in EP and EN , and vice versa. The amount of modification
of wi is determined by the characteristic of the marginal
cost function Cθ(m). For an example, when (13) is used
as a Cθ(m), instances whose margins are around (θ − 1)/2
largely affect the amount of modification of wi. These two
simple processes are iterated until cost (W) or variance of W
converges. Note that DOOMRED may decrease the margins
of the training instances which are not contained in the sets

Table 1: Parameter settings for the single layer optimization
method in Algorithm 2 used in our experiments.

Parameter Value

Cθ(m) Figure 1(b)

NW 300

Variance of θP 0.0 to 0.5 (step 0.1)

Variance of θN 0.4 to 0.8 (step 0.1)

Prec 0.01

EP and EN . However, we also note from (2) that, after a
certain value of θ is determined, the accuracy of f (x) is
not affected by the instances whose margins are above θ. It
is because once θ is determined, the only issue we should
consider is the portion of training instances whose margins
exceed θ. After each DOOMRED execution, the threshold
value is adjusted to make the training detection rate to be
the specific goal value.

3.4. Single layer optimization method

Although we have derived a simple and clear optimization
rule for a boosted single layer detector from Theorem 1, one
problem still remains that (2) does not provide the exact
values of the key parameters to minimize the test error for the
nontarget set. Since our objective is to find a globally optimal
solution, DOOMRED is executed on the various randomly
selected initial values of the base hypothesis weight set WR,
θP , and θN . Among these various trials,WS and θS which have
the least false positive rate on the validation nontarget set
SNV are selected as the final output when the detection rate
is fixed on the training target set SP . The final output of the
optimization is a boosted detector f (x) that is expressed with
the originalH ,W =WS, and θT = θS. The pseudocode of the
single layer detector optimization is given in Algorithm 2.

4. CASCADE DETECTOR OPTIMIZATION

For the optimization of a boosted cascade detector, the
false-classified instances occurred in the real application are
enforced to the first layer of the cascade detector. Then
the optimization method for a single layer detector in
Algorithm 2 is applied to each layer. In order not to degrade
the efficiency of the cascade detector, the target and nontarget
instances which are not rejected by any prelayer are used for
the optimization of the postlayers.

5. EXPERIMENTAL RESULTS

5.1. Experimental environments

We tested the proposed algorithm to the frontal face
detection problem. A face database used for our experiments
contains 7143 24×24 sized face instances. Nonface instances
are cropped from a 2179 natural scene images collected
from the world wide web. Then both target and nontarget
instances are divided into three groups. The first group
is used as an initial training set, and the false-classified
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DOOMRED (H ,W , SP , SN , θP , θN , prec)
exe = true
while (exe)

EP = [(x, y) | (x, y) ∈ SP , y f (x) < θP],EN = [(x, y) | (x, y) ∈ SN , y f (x) < θN ]
g = −∇W cost (W)
if (W + g has any negative valued element)

scale g that no element of W + g has negative value
if (weight Sum (g) ≥ prec)

WB = normalize (W + g)
if (cost (WB) < cost (W)) W =WB

else exe = false
else exe = false

return W

Notations
H := {hi | i = 1, . . . ,T}, number of T base hypotheses set
W := {wi | i = 1, . . . ,T , 0 < wi < 1,

∑T
i=1wi = 1}, base hypothesis weight set

SP := {(xi, yi) | xi = target training instance, yi = 1}
SN := {(xi, yi) | xi = non-target training instance, yi = −1}
cost (W) =∑(xi ,yi)∈EPCθP (yi f (xi)) +

∑
(xi ,yi)∈EN CθN (yi f (xi))

weight Sum (W) =∑T
i=1wi,wi ∈W

normalize (W) = scale W that
∑T

i=1wi = 1

Algorithm 1: The pseudocode of DOOMRED.

instances among the second group by the completely trained
detector are used as the enforced training data. The last group
is used to measure the test errors.

Table 1 shows the parameter settings for the optimization
method used in the single layer detector in Algorithm 2.
First, the digitized sigmoid function shown in Figure 1(b)
is defined as Cθ(m). Since the exponential function requires
large computational burden, the region from −1 to specific
θ is divided into 100 segments and the gradient of each
segment is precomputed. Second, NW and the variation
ranges of θN and θP are set constant for all layers. These fixed
values are determined by our tuning process. It might seem
to be unreasonable to fix NW to be independent of T , which
is the number of the base hypotheses of f (x). However, for
the boosted cascade detectors in most of real applications,
no more than 200 base hypotheses are used to construct each
single layer detector in the cascade detector. The number 300
for the random base hypothesis weight set is enough to make
the performance of DOOMRED stable when the number of
base hypothesis is under 200.

Experiments are performed on various boosted frontal
face detectors trained using the Adaboost algorithm with
different conditions of the size of initial training set, base-
hypotheses contained, and the enforced target training set.
Note that since DOOMRED only modifies the weights of the
base hypotheses, the performance of DOOMRED depends
on the quality of the initial feature space constructed in the
learning procedure.

The performance of DOOMRED is evaluated based on
two criteria; (1) ROC curve, (2) optimization (or training)
time. The first factor is critically related to the accuracy and
the detection time in real applications. The second factor is
related to the training or optimization cost of a detector. This

factor is particulary important since a boosting algorithm
generally requires a large amount of training time. The
performance of DOOMRED is compared to those of other
heuristic solutions such as the adjusting threshold θT of
single layer detector and retraining.

5.2. Experiments on single layer detectors

Figures 2, 3, and 4 show the ROC curves of various
single layer detectors. In Figure 2, each original (or initial)
detector was trained to have 200 base hypotheses. The face
instances as many as 1000, 2000, 3000, and two times of
each for the nonface instances were given as an initial
training set. Then, false-rejected face instances which were
not contained in the initial training set were enforced as
many as 2000 false-classified nonface instances were enforced
for the threshold adjusting and DOOMRED solutions, while
500 false-classified nonface instances were enforced for the
retraining since the Adaboost algorithm occasionally failed
to finish the learning procedure when 2000 nonface instances
were enforced. In Figure 2, we can see that the amount of
improvement in the accuracy by DOOMRED increased as
the number of the initial training instance increased. Because
DOOMRED deals with the weight set of base hypotheses
only, the performance of DOOMRED seems to be affected by
the quality of the base hypotheses selected during the initial
training process.

In Figure 3, each initial detector was trained to have
the number of base hypotheses of 3, 100, and 200. The
sizes of the initial face and nonface training sets were
2000 and 4000, respectively. The sizes of the enforced face
and nonface sets were same as in Figure 2. Except for
the case when the number of the base hypotheses was
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Figure 6: (a) The false positive rates of the boosted cascade frontal
face detectors before and after the optimization. (b) ROC curves
of the boosted cascade frontal face detectors before and after the
optimization estimated on CMU+MIT frontal face test images
composed of 130 images containing 507 faces.

3, DOOMRED demonstrated stable and also remarkable
performances compared with those of the other approaches.
In the case when the number of the base hypotheses was 3,
DOOMRED failed to increase the accuracy. This was because
there were large amount of the face instances which were
determined as −1 (nonface) by all the 3 base hypotheses.
There was no chance for these faces to be determined as
faces by only adjusting the weights of base hypotheses using
DOOMRED.

In Figure 4, one initial detector was trained to have 200
base hypotheses with 2000 face and 4000 nonface instances.
Then 10, 20, and 40 false-rejected face instances which were
not contained in the initial training set were enforced. The
size of the enforced nonface set were same as in Figure 2.

Table 2: The average number of the base hypotheses evaluated
per each nonface instance and the optimization (or training) time
estimated on Pentium 4 2.8 GHz PC.

Detector
Average Optimization

num. of base hyp. Time(min)

F2500 org. detector 13.9 8291

F2500 doomred 17.6 704

F2500 thres adj. 20.3 4

F5265 org. detector 14.2 17431

It can be observed that DOOMRED increased the accuracy
of the detectors when more enforced training instances
were given. DOOMRED still showed stable and remarkable
performance compared with those of the heuristic solutions.
An interesting observation in our experiments was that the
retraining sometimes failed to select 200 base hypotheses
whose errors on the training set were under 0.5. A conclusion
we can make on the single layer detector experiments is that
DOOMRED exhibits a more stable and better performance
than the other two naive approaches. The only exception was
when the detector was initially trained with excessively small
number of base hypotheses.

Figure 5 shows the optimization (training) time for the
tests in Figures 2, 3, and 4. DOOMRED required only
less than 11.3% of the computation time for the retraining
method, while showing similar or better test false positive
rates as shown in Figures 2, 3, and 4. Although the threshold
adjusting method was fast by taking only a few minutes for
any case, the performance was not satisfactory.

5.3. Experiments on cascade detectors

For this experiment, two boosted cascade frontal face detec-
tors were initially constructed using AdaBoost algorithm.
One was trained with an insufficient number of training
data including 2500 face and 5000 nonface instances, and
it was composed of 30 layers (2500-face detector). The
second cascade detector was trained with an abundant
number of training data including 5265 face and 10530
nonface instances, and was composed of 30 layers (5265-face
detector). Each cascade detector was constructed sequentially
with one 3-base hypotheses, one 5-base hypotheses, three
20-base hypotheses, and two 50-base hypotheses layers. The
number of base hypotheses of all the postlayers was set
to 200. Then 431 false-rejected face instances which were
not contained in the initial training set were enforced to
the first layer of the 2500-face detector. Due to occasional
failures in the learning procedure of the retraining solution
as mentioned in Section 5.2, tests for the performance of the
retraining method were substituted by that of the 5265-face
detector. Note that the 5265-face detector may be considered
as a detector retrained with 2500 initial faces and 2765
enforced faces.

In Figure 6(a), the 2500-face detector shows the steepest
decrement in the test false positive rate while showing the
worst accuracy as can be seen in Figure 6(b). Meanwhile, the
5265-face detector shows similarly a low false positive rate
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OptimizeSingleLayer (H , SPI , SPE, SNI , SNE,DG, prec)

SP := sum SPI and SPE, SN := sum SNI and SNE
divide SN into SNT and SNV
for (number of NW )

WR = randomly generated base hypothesis weight set of H
for (various θP and θN )

WO = DOOMRED (H ,WR, SP , SNT , θP , θN , prec)
adjust θT to get DG on SP with H ,WO

if (least false positive rate is made on SNV with H ,WO, θT)
WS =WO, θS = θT

return WS, θS

Notations
H : base hypothesis set
SPI , SNI : initial target, non-target training set
SPE, SNE: enforced target, non-target training set
DG: goal detection rate of single layer detector

Algorithm 2: The pseudocode for the optimization of the boosted single layer detector on the enforced training set.

at each single layer detector while showing good accuracy.
As the 431 false-rejected faces were enforced to the 2500-
face detector, the threshold adjusting method demonstrated
good accuracy in the ROC curve even compared to that of
the 5265-face detector as shown in Figure 6(b). We think that
this is because the informative training instances (enforced
training instances) effectively compensated the distribution
of the initial training set. However, one problem of this
heuristic method is that the detector becomes slower in
real applications as the number of the enforced instance
increases. In Table 2, the average number of the base
hypotheses calculated per nonface instance is shown, which
is critically related to the detection time in real applications.
When the threshold θT of each layer was simply adjusted to
acquire 99.5% of the training detection rate, the detection
time increased by 46.0% and 42.9% compared to those of
the 2500-face detector and 5265-face detectors. However, if
DOOMRED was applied, these computational cost incre-
ments decreased to 26.6% and 23.9% while showing the best
accuracy among those of three other cases in Figure 6(b).
Note also that the optimization time of DOOMRED on the
2500-face detector was 704 minutes as shown in Table 2. This
is barely 8.5% and 4.0% of the training time required in
the 2500-face detector and 5265-face detectors, respectively.
Therefore, we can conclude that the proposed DOOMRED
is a reasonable solution for the optimization of the boosted
cascade detector on the enforced training set considering its
excellent performance to enhance the detection speed and
accuracy in reasonable optimization time.

6. CONCLUSION

In this paper, we proposed DOOMRED, an algorithm to
modify the base hypothesis weight set initially constructed by
a boosting algorithm. It can be applied to the boosted single
layer or cascade detector when the false-classified training

set is enforced. Experimental results demonstrated that
DOOMRED excellently enhanced the performance of the
boosted single layer or cascade detectors compared to those
of other heuristic approaches while requiring reasonable
optimization time. DOOMRED, however, showed weak per-
formance when the number of the base hypotheses is small.
To overcome this limitation, we are planning to develop an
efficient algorithm that can substitute the inappropriate base
hypotheses with the optimal ones.
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