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Abstract

In this paper, we propose a new algorithm that solves
both the stereo matching and the image denoising prob-
lem simultaneously for a pair of noisy stereo images. Most
stereo algorithms employ L1 or L2 intensity error-based
data costs in the MAP-MRF framework by assuming the
naive intensity-constancy. These data costs make typical
stereo algorithms suffer from the effect of noise severely. In
this study, a new robust stereo algorithm to noise is pre-
sented that performs the stereo matching and the image de-
noising simultaneously. In our approach, we redefine the
data cost by two terms. The first term is the restored in-
tensity difference, instead of the observed intensity differ-
ence. The second term is the non-local pixel distribution
dissimilarity around the matched pixels. We adopted the
NL-means (Non Local-means) algorithm for restoring the
intensity value as a function of disparity. And a pixel distri-
bution dissimilarity is calculated by using PMHD (Percep-
tually Modified Hausdorff Distance). The restored intensity
values in each image are determined by inferring optimal
disparity map at the same time. Experimental results show
that the proposed algorithm is more robust and accurate
than other conventional algorithms in both stereo matching
and denoising.

1. Introduction
1.1. Motivation

Stereo matching algorithms have achieved excellent ad-
vances in the last several decades [14]. Most algorithms
have some common assumptions. One of these assump-
tions is the intensity-consistency that the corresponding in-
tensities in two images are same. Typical stereo algorithms
that use L1 or L2 intensity error as the data costs produce
good results for some standard test images [1]. Unfortu-
nately, however, considerable amount of noise could ex-
ist in real images inevitably due to various causes such as
light variation, image blurring, sensor noise by optical sys-

tem and photo detector [2]. In spite of the fact that these
noises can influence the performance of the algorithms se-
riously, only a few studies can be found in the literature on
the noise effects in stereo matching. And current state-of-
the-art stereo algorithms fail on noisy images. This prob-
lem led us to study about the noise effects on the typical
stereo algorithms. In this paper, we propose a new algo-
rithm that solves both the stereo matching problem and the
image denoising problem for a pair of noisy input images,
simultaneously.

1.2. Related works

For the study on the effects of noise in stereo prob-
lem, Leclercq et al. [11] compared the performances of
several stereo algorithms such as the Census Transform
algorithm [19], window-based algorithms (such as SAD,
SSD, Normalized Intensity Difference, Correlation), and
the pixel-to-pixel algorithm (Birchfield and Tomasi (BT)
data cost [3]) with dynamic programming (DP). They con-
cluded that BT data cost with DP showed the best perfor-
mance among the above algorithms for noisy images. Kim
et al. [10] showed good results for severely contrast vary-
ing pairs of images using mutual information. They relaxed
the constant brightness assumption and merely assume that
there is a consistent relationship between corresponding
scene intensities. Ogale et al. [12] also presented contrast-
robust stereo matching algorithm using multiple frequency
channels. Strecha et al. [15] considered the possibility of
non-Lambertian effect of the same point in the scene. They
proposed an Expectation Maximization based approach to
solve this problem in a wide base-line stereo using multiple
images with different point of views. However, they did not
cover a large deviation from the Lambertian assumption.

2. Standard energy minimization framework
based on MAP-MRF model

The MAP-MRF (Maximum A Posteriori-Markov Ran-
dom Field) is the most popular model in global energy min-
imization based stereo algorithms. Given a pair of rectified
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Figure 1. (a) and (b) are the left and right Tsukuba images contam-
inated by Gaussian noise with mean 0 and standard deviation 10.
(c) is the disparity map of BT data cost [3] with belief propaga-
tion (BP) for the noise-free Tsukuba image pair. (d) is the disparity
map of BT data cost with BP for the noisy Tsukuba image pair in
(a) and (b). (e) is the disparity map of our algorithm for the noise-
free Tsukuba image pair. (f) is the disparity map of our algorithm
for the noisy Tsukuba image pair in (a) and (b).

input stereo images I = {IL, IR}, the goal is to find dis-
parity maps f = {fL, fR}. Using the Bayesian rule, we
have

p(f |I) =
p(I|f)p(f)

p(I)
. (1)

And the optimal disparity values that maximize eq. (1) can
be formulated by the following MAP framework.

fopt = arg max
f

p(f |I) = arg max
f

p(I|f)p(f)

p(I)
, (2)

where p(I) is constant, so that we can neglect it. The re-
lationship between energy (E) and probability (P ) can be
represented by the Gibbs distribution,

P ∝ e−kE . (3)

Hence, the maximum a posteriori problem becomes equiv-
alent to the minimization problem of following energy.

E(f |I) =
∑

p

Dp(fp) +
∑

p

∑

q∈N(p),p6=q

V (fp, fq), (4)

(a) Tsukuba (b) Venus
Figure 2. Noise in the Tsukuba and Venus image

where N(p) is the neighborhood pixels of p. Dp(fp) is the
data cost that measures the cost when pixel p is assigned by
label fp. V (fp, fq) is the discontinuity cost that accounts
for the prior knowledge that the world consists of piece-
wise smooth objects. Combining these costs, therefore, the
optimal disparities can be found by minimizing the total en-
ergy in eq. (4) by an inference algorithm such as belief
propagation [17] and graph cuts [4].

3. Weakness of previous models for noise

Almost all pixel-to-pixel based data costs such as AD
(Absolute Difference), truncated AD [16], and BT (Birch-
field and Tomasi) [3] assume that corresponding intensi-
ties are consistent, on the basis of the L1 intensity differ-
ence. Various window-based methods such as SSD, SAD
and adaptive window methods [9, 18], and various segment-
based methods [7, 8] aggregate pixel-wise L1 or L2 differ-
ences in a proper window as the data cost. In general, noise
affect the accuracy of these data costs severely as the vari-
ance of noise grows unless the noise of each pixel is elimi-
nated. If we assume that the noise of each pixel is Gaussian,
then the observed intensities in the left and right noisy im-
ages can be written as

IL = SL + nL, IR = SR + nR, (5)

where S = {SL, SR} is the noise-free intensity values,
n = {nL, nR} is the Gaussian noises with mean zero and
standard deviations σ = {σL, σR}. Let us denote the inten-
sity value at a pixel p in the left image to be IL(p). If we
assume that the pixel p has true disparity fp, then the cor-
responding intensity in the right image will be IR(p + fp).
The expected value of L2 error between the two intensities
can be calculated by

E[|IL(p) − IR(p + fp)|
2]

= E[|SL(p) + nL(p) − SR(p + fp) − nR(p + fp)|
2]

= (SL(p) − SR(p + fp))
2 + σ2

L + σ2
R.

(6)
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On the other hand, the expected value of L1 error can be
obtained by

E [|IL(p) − IR(p + fp)|]

= E [|SL(p) + nL(p) − SR(p + fp) − nR(p + fp)|]

= |SL(p) − SR(p + fp)| .

(7)

And from eq. (6) and eq. (7), the variance of L1 error
becomes

E[(|IL(p) − IR(p + fp)| − |SL(p) − SR(p + fp)|)
2]

= σ2
L + σ2

R. (8)

Hence, both the mean of L2 error and the variance of L1
error increase in proportion to the noise variances. This
means that when σL � 0 or σR � 0, data costs based
on L1 and L2 error become no longer reliable measures for
correct stereo matching. Fig. 1(c) and 1(d) show the effects
of the Gaussian noise on typical stereo data cost (BT) [3]
with belief propagation (BP). While this classical method is
very sensitive to such noise, Fig. 1(e) and 1(f) show that our
proposed algorithm is quite robust to the noise.

Fig. 2 shows the noisy pixels in Tsukuba and Venus im-
ages provided in [1]. These noisy pixels are estimated by
warping the left image to the right image using the ground
truth disparity map and then computing absolute differences
of corresponding intensities. If two corresponding pixel in-
tensities are different, we consider that these pixels have
noise. We note that most noisy pixels exist at the high fre-
quency region, and this is the reason why algorithms em-
ploying the BT data cost [3] that is insensitive to image sam-
pling by using the linearly interpolated intensity function
showed relatively better results than others on those origi-
nal data set. However, if considerable amount of noise is
added in the images, even this data cost no longer guaran-
tees reliable results as shown in Fig. 1(c) and 1(d).

4. Proposed algorithm
Note that if we know the exact correspondences between

input noisy images, we can restore the true intensity val-
ues more precisely using multiple samples. On the other
hand, if we have noise-free images, then the performance
of stereo matching algorithm will be improved. In gen-
eral, however, it is a “chicken-and-egg problem” to solve
both the image denoising and stereo matching problem, al-
though human eye can do this. In this section, we describe
a new algorithm that solves the stereo matching problem
and image denoising problem for two noisy input images
simultaneously. The novelty of this algorithm is on devis-
ing a new data cost that is robust to noise. It consists of
two terms: The first term is the restored intensity differ-
ence as a function of the disparity. And the second term
is the dissimilarity of non-local supporting pixel distribu-
tions around the matched pixels. We adopt NL-means (Non

(a) (b)
Figure 3. The distributions of support point sets for the Tsukuba
image pair

Local-means) algorithm [5] for the restoration of intensity
values, and the PMHD (Perceptually Modified Hausdorff
Distance) [13] for the calculation of dissimilarity of support
pixel distributions. The total energy incorporating the pro-
posed data cost and a symmetric discontinuity cost [18] is
minimized using belief propagation. The restored intensity
values in each image are determined by inferring the op-
timal disparity map, and the denoised images are used for
inferring the more correct disparity map iteratively.

4.1. Restored intensity difference

Most local image details (in texture or color) occur mul-
tiple times in an image. This redundancy and self-similarity
of an image can be used to eliminate noise. The NL-means
algorithm replaces the noisy value by a weighted average of
all the pixels in an image. The weight depend on the sim-
ilarity between the neighborhoods of pixels. In this paper,
we extended the NL-means algorithm to denoising stereo
images under the stereo matching framework.

Let us denote the restored intensity of IL(p) and IR(p +
fp) to be SL,p(fp) and SR,p+fp

(fp), respectively. First, we
find a point set T = {t|t ∈ Mp, t 6= p} in the left image that
have similar neighborhoods with that of the pixel p in the M

× M large search window Mp as shown in Fig. 3(a). The
dissimilarity between pixel p and each pixel t in the point
set T is defined by

d(v(Np), v(Nt)) = Gσ ∗ |(v(Np)) − (v(Nt))|
2
, (9)

where Np and Nt are m × m small comparison windows
centered at pixel p and t, respectively. v(Nk) denotes the
1-D vector of Nk. Gσ is a Gaussian kernel with standard
deviation of σ. The pixels with similar neighborhood to
v(Np) have larger weight. And this weight is defined by

w(p, t) =
1

Z(p)
exp(−

d(v(Np), v(Nt))

h2
), (10)

where Z(p) is the normalization factor. And d(·, ·) is the
Euclidean distance between two vectors. For the computa-
tional convenience, by sorting the pixels in the search win-
dow Mp according to the weights, we select and use only
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the first N highly weighted pixels among them. We de-
note this subset as TL(p) and call it as the support point
set for the pixel p in the left image. To fully utilize the re-
dundancy in two images, we warp all pixels in TL(p) to the
right image according to f , and denote the corresponding
set in the right image as TWR(p) and call it as the warped
support point set. If two pixels p ∈ IL and p + fp ∈ IR are
the exact corresponding pixels, the restored value SL,p(fp)
using both TL(p) and TWR(p) would have less noise than
using TL(p) only. Thus, let us define the restored intensity
at p ∈ IL to be the weighted average of all the pixels in both
TL(p) and TWR(p) as follows.

SL,p(fp) =
1

2

∑

tl∈TL(p)

w(p, tl)IL(tl)

+
1

2

∑

tr∈TW R(p)

w(p, tr)IR(tr).

(11)

Similarly and symmetrically, the restored value of pixel p+
fp ∈ IR is defined by

SR,p+fp
(fp) =

1

2

∑

tr∈TR(p+fp)

w(p + fp, tr)IR(tr)

+
1

2

∑

tl∈TW L(p+fp)

w(p + fp, tl)IL(tl).

(12)

Now, the difference of the two corresponding restored in-
tensity values at p ∈ IL and p + fp ∈ IR with given fp can
be defined by

∆S(p, fp) =
∣

∣SL,p(fp) − SR,p+fp
(fp)

∣

∣ . (13)

We note that if fp is correct, then

∆S(p, fp) ≈ |SL(p) − SR(p + fp)| ≈ 0.

Thus, the minimization of the restored intensity difference
in eq. (13) can lead us to achieve both image denoising and
correct stereo matching.

4.2. Non-local pixel distribution dissimilarity

In the previous subsection, we have constructed the sup-
port point set TL(p) for pixel p ∈ IL and TR(p + fp) for
pixel p+fp ∈ IR that have non-local pixel distributions. We
note that if fp is correct, then the geometric configurations
of TL(p) and TR(p+fp) will be similar. Thus, the similarity
of the geometric configurations of these two support point
sets also can be a good measure for how well the two pixels
p and p + fp correspond to each other. In general, Haus-
dorff distance (HD) is known to be an effective and popular
metric for the dissimilarity measure between two point sets.
However, the limitation of the conventional HD is that it
considers the distance between two points only regardless

(a) TL(p) for pixel
p = (150, 150)

(b) TR(p + fp) , fp = 0,
PMHD = 4.9

(c) TR(p + fp) , fp = 5,
PMHD = 12.7

(d) TR(p + fp) , fp = 10,
PMHD = 0.3

Figure 4. (a) The distribution of support points for pixel p =
(150, 150) in the Tsukuba left image, and (b),(c),(d) show the dis-
tributions of support points and the corresponding PMHD values
for pixel p + fp in the Tsukuba right image when fp = 0, 5, 10,
respectively. At correct disparity fp = 10, the geometric config-
urations of TL(p) and TR(p + fp) becomes almost the same and
the corresponding PMHD value is minimum.

of the weight or mass of each point. Thus, in our case, since
each pixel in a support point set has its own weight, the
conventional HD does not work properly. Recently, PMHD
(Perceptually Modified Hausdorff Distance) [13] has been
proposed which accounts for the weight of each point in the
sets. Adopting this PMHD measure, we can calculate the
dissimilarity between two weighted support point sets of

TL(p) = {(tl, w(p, tl))|l = 1, ...., Nl} ,

TR(p + fp) = {(tr, w(p + fp, tr))|r = 1, ..., Nr} .
(14)

by
DH(TL(p), TR(p + fp))

= Max {dH(TL(p), TR(p + fp) ),

dH(TR(p + fp), TL(p))},

(15)

where dH(·, ·) is the directed PMHD defined by

dH(TL(p), TR(p + fp))

=

∑

l

[

w(p, tl) × min
r

d(tl,tr)
min(w(p,tl),w(p+fp,tr))

]

∑

l

w(p, tl)
,

(16)
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where d(tl, tr) is the Euclidean distance between two
points. Using PMHD, the support point distribution dis-
similarity between the pixel p in the left image and p + fp

in the right image can be defined by

∆G(p, fp) = DH(TL(p), TR(p + fp)). (17)

Fig. 4 shows the variation of the support points distribu-
tion according to the disparity. Fig. 4(a) represents the set
of support points TL(p) for the pixel at p = (150, 150) in
the left image. Fig. 4(b)-(d) show the corresponding sets
of supporting points for the pixel p + fp in the right image
according to the disparity value fp. As we can see from
these figures, at the correct disparity fp = 10, the geomet-
ric configuration between TL(p) and TR(p + fp) becomes
almost the same and the corresponding PMHD value gets
its minimum value.

4.3. Data cost incorporating restored intensity dif-
ference and support pixel distribution dissim-
ilarity

Now, let us combine the restored intensity error in eq.
(13) and the support points distribution dissimilarity in eq.
(17) for our new data cost as follows.

Dp(fp) = − ln((1 − ed) exp(−(
∆S(p,fp)

σs
+

∆G(p,fp)
σg

))

+ed), (18)

where we adopted the robust function [17] to make it more
robust to outliers.

4.4. Discontinuity cost

In this paper, we employed following discontinuity cost
between neighboring pixels p and q [18].

V (fp, fq) =

{

0 if fp = fq

ρfp
(∆Cl,∆Cr) otherwise

(19)

ρfp
(∆Cl,∆Cr) =



















Pl × Pr × s if ∆Cl < T,∆Cr < T

Pl × s if ∆Cl < T,∆Cr > T

Pr × s if ∆Cl > T,∆Cr < T

s otherwise
(20)

where ∆Cl is the magnitude of intensity gradient between
p and q in the left image and ∆Cr is that between p + fp

and q + fq in the right image. T is the threshold value for
intensity gradients ∆Cl and ∆Cr to impose discontinuity
cost. Pl, Pr and s are the penalty terms that used for deter-
mining the total discontinuity cost according to the inten-
sity gradient values ∆Cl and ∆Cr. The penalty increases
as the intensity gradient decreases. The intensity gradient is
calculated by the restored intensity values that rely on the
disparity.

4.5. Global energy modelling

Now, the global energy can be defined by

E(f) = Edata(f) + Ediscontinuity(f), (21)

where
Edata(f) =

∑

p

Dp(fp), (22)

and

Ediscontinuity(f) =
∑

p

∑

q∈N(p)

V (fp, fq). (23)

The total energy E(f) can be minimized by an optimization
algorithm such as belief propagation. Note that the restored
intensity values in each image are determined simultane-
ously by inferring the optimal disparity map using eqs.(11)
and (12).

5. Experimental results
In our experiments, we fixed all the parameters of the

proposed algorithm such that Mp = (61 × 61), Np =
(3 × 3), N = 200, σs = 6.0, σg = 100, ed = 0.01. And
for the discontinuity cost, we set Pr = Pt = 2.0, T = 8.5,
and s = 1.8. We have tested and compared the perfor-
mance of our algorithm with others such as BT data cost
with BP (BT+BP), truncated AD data cost with BP (Trun-
cated AD+BP), SAD (5 by 5 window) data cost with BP
(SAD+BP), mean-shift segmentation [6] and plane fitting
based data cost (similar to [7, 8]) with BP (Segment+BP)
on the standard test image set in [1]. We added Gaussian
noises with mean 0 and various standard deviation σ to this
test image set with the same amount of noise in both left
and right images.

Fig. 5 compares the performance of various stereo al-
gorithms with our algorithm for Tsukuba image by vary-
ing the noise variance. And Fig. 6 shows the quantitative
comparison results (the percentage of bad pixels) of the re-
constructed disparities on several other test stereo images.
We see from those figures that the proposed algorithm pro-
duces the best results in both qualitative and quantitative
evaluations, while most algorithms based on L1 and L2 er-
ror suffer seriously as the noise variance gets increased. In-
terestingly, the segmentation-based BP algorithm gives bet-
ter performance among others. We think that this is due to
the somewhat robust property of the mean-shift and plane-
fitting procedures to noise in the segmentation step. Fig.
7 shows more disparity results by our algorithm on Venus,
Teddy and Cone images with varying amount of noise. In
order to verify the effectiveness of the simultaneous re-
construction and denoising of noisy stereo images by our
method, we have compared our results with those of a naive
approach in which the image denoising was performed first
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(a) BT+BP with noise σ

= 0
(b) BT+BP with noise σ

= 5
(c) BT+BP with noise σ

= 10
(d) BT+BP with noise σ

= 15
(e) BT+BP with noise σ

= 20

(f) Truncated AD+BP
with noise σ = 0

(g) Truncated AD+BP
with noise σ = 5

(h) Truncated AD+BP
with noise σ = 10

(i) Truncated AD+BP
with noise σ = 15

(j) Truncated AD+BP
with noise σ = 20

(k) SAD+BP with noise
σ = 0

(l) SAD+BP with noise
σ = 5

(m) SAD+BP with noise
σ = 10

(n) SAD+BP with noise
σ = 15

(o) SAD+BP with noise
σ = 20

(p) Segment+BP with
noise σ = 0

(q) Segment+BP with
noise σ = 5

(r) Segment+BP with
noise σ = 10

(s) Segment+BP with
noise σ = 15

(t) Segment+BP with
noise σ = 20

(u) Proposed cost+BP
with noise σ = 0

(v) Proposed cost+BP
with noise σ = 5

(w) Proposed cost+BP
with noise σ = 10

(x) Proposed cost+BP
with noise σ = 15

(y) Proposed cost+BP
with noise σ = 20

Figure 5. Results of test stereo algorithms on noisy Tsukuba image pair with varying standard deviation of noise σ.
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(a) Tsukuba (b) Venus (c) Teddy (d) Cone
Figure 6. Quantitative comparison of the stereo matching results on several test images according to the noise standard deviation σ

and then stereo matching followed. We used the Tsukuba
images contaminated by Gaussian noise with mean 0 and
standard deviation 10 as the test images. The PSNR of

both left and right noisy images were 28.38dB. These noisy
images were filtered independently by the NL-means algo-
rithm, and after denoising, the PSNR of the left and right
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(a) Venus with noise σ =
0

(b) Venus with noise σ =
5

(c) Venus with noise σ =
10

(d) Venus with noise σ =
15

(e) Venus with noise σ =
20

(f) Teddy with noise σ =
0

(g) Teddy with noise σ =
5

(h) Teddy with noise σ =
10

(i) Teddy with noise σ =
15

(j) Teddy with noise σ =
20

(k) Cone with noise σ =
0

(l) Cone with noise σ =
5

(m) Cone with noise σ =
10

(n) Cone with noise σ =
15

(o) Cone with noise σ =
20

Figure 7. Reconstructed disparity maps of noisy Venus, Teddy and Cone images by the proposed algorithm

(a) BT+BP using
denoised images

(b) Truncated AD+BP
using denoised images

(c) SAD+BP using
denoised images

(d) Segment+BP using
denoised images

(e) Our proposed
cost+BP

Figure 8. Comparison of “independent denoising and stereo matching schemes” (a)-(d) and the proposed algorithm (e)

images increased to 33.01 dB and 33.04 dB, respectively.
Then, to these denoised images, conventional stereo algo-
rithms were applied. Fig. 8(a)-(d) illustrate the results of
the independent denoising and stereo matching procedures
by BT+BP, Truncated AD+BP, SAD+BP and Segment+BP,
respectively. By comparing with the result of our method
that incorporates image denoising in stereo matching frame-
work as shown in Fig. 8(e), we can convince the validity of
our approach over the sequential approach. Moreover, re-
garding the performance of image denoising, the denoised
images using our method had also even higher PSNR val-
ues (left one was 33.78 dB and right one was 33.79 dB) than
those of the denoised images using each single image only.
Table 1 compares the PSNR values of denoised (left) images
by the NL-means algorithm using single image with those

(a) Original (b) NL-m (c) Ours
Figure 9. (a) input left image (noise σ = 20), (b) denoised image
by the NL-means method, (c) denoised image by proposed method

by proposed method. Fig. 9 shows the denoised images for
the Tsukuba image for noise σ = 20. We notice that the
proposed method restores the stereo images reliably even
under severe noise conditions.
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noise σ Tsukuba Venus Teddy Cone
Input NL-m Ours Input NL-m Ours Input NL-m Ours Input NL-m Ours

5 34.23 34.19 34.51 34.17 31.8 33.42 34.2 32.5 32.6 34.2 31.7 31.7
10 28.38 32.01 33.78 28.20 32.3 32.83 28.23 31.85 32.31 28.2 31.11 31.4
15 25.02 30.19 32.03 24.78 29.81 31.53 24.7 29.48 31.5 24.7 28.90 30.4
20 22.68 28.40 30.06 22.38 26.63 29.67 22.3 26.36 29.56 22.2 25.96 28.56

Table 1. PSNRs [dB] of the input left noisy image (Input) and denoised left images by the conventional NL-means algorithm using single
image (NL-m) and those by the proposed algorithm (Ours)

6. Conclusion

In this paper we have addressed the simultaneous re-
construction of disparity and image denoising problem for
noisy stereo images, and proposed a novel algorithm to
solve it. In the MAP-MRF framework, we defined new data
cost that consisted of the restored intensity error term and
the support point distribution dissimilarity term. We have
generalized the NL-means algorithm to stereo images for
denoising and employed PMHD for the measure of dissim-
ilarity between support point sets. Comparative experimen-
tal results on standard test images demonstrated that the pro-
posed algorithm achieved better results in not only stereo
matching, but also image denoising than conventional ap-
proaches.
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