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ABSTRACT 

In this paper, we present a new 3D camera motion estima- 
tion technique using optical flow froma pair of images taken 
under a perspective projection. The problem formulation 
leads to the solution of overdetermined nonlinear system 
of equations w.r.t. the motion parameters. By employing 
an efficient initial guess algorithm which uses a weak per- 
spective projection and an image coordinate normalization 
technique, the nonlinear solution can be obtained robustly 
and accurately. The proposed method has been tested on 
both several synthetic and real image sequences. The re- 
sults show that the performance of the proposed algorithm 
is quite superior to the conventional ones even under more 
general and noisy situations. 

1. INTRODUCTION 

Since 2D motion between sequence of images can be ex- 
ploited to infer the relative 3D motion information between 
a scene and a camera, many techniques have been developed 
to estimate 3D motion parameters from 2D motion field in 
images so far [I]. In general, the problem formulationleads 
to the solution of overdetermined nonlinear system of equa- 
tions w.r.t. the motion parameters, and usually direct non- 
linear minimization approaches suffer from the initial value 
problem. Thus, several researches have tried to approximate 
and formulate the original nonlinear problem as a linear one 
so that the solution can be obtained easily [ 2,3]. However, 
due to very restrictive assumptions on the motion and cam- 
era geometry, the results are not reliable in practice. 

In this paper, we propose a new 3D motion parameter re- 
covery algorithm between a camera and objects in a scene, 
which is formulated by nonlinear equations under more gen- 
eral situation without additional assumptions. In order to 
solve the nonlinear equations robustly, we propose an ele- 
gant initial guess algorithm, in which a weak perspective 
projection and an image coordinate normalization technique 
are employed to decouple the translational parameters from 
rotational ones, so that a robust initial value for the solution 
of the original nonlinear problem can be obtained easily. By 
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Fig. 1. Block diagram of proposed 3D motion estimation 

using the estimated initial value, the motion parameters can 
be recovered accurately through a nonlinear minimization 
technique. The overall procedure of the proposed 3D mo- 
tion parameter estimation algorithm is illustrated in Fig. l. 

2. 3D MOTION ESTIMATION 

2.1. Camera Model 

Although no distinction is made between the situations where 
a) a camera is moving and objects are stationary, b) a camera 
is stationary while objects are in motion, or c) both camera 
and objects are in motion, in this paper, a mathematical for- 
mulation based on the situation a) is employed. Let us de- 
note the space points be Xi = [ X i ,  Yi, ZJT (i = 1, . . . , N )  
and the projected points on the reference image plane by a 
perspectivetransformationbe moi = [xOiT, 1IT = [zoi, yo{, 1IT 
When the camera undergoes a rotational and translational 
motion described by a matrix R and a vector t respectively, 
the corresponding point xli = (zli, ~ 1 . i ) ~  on the next im- 
age can be described by 

Sl i [Zl i ,  ~ l i ,  lIT = S I ~ [ X ? ~ ,  lIT = P[R(soiP-'mo,) + t], (1) 

where 3k.i (k = 0,1, andi = 1, . . . , Ai) is the distance(depth) 
from the image plane to the object point, and 

T f S Z  0 

P = [ f? H] , R =  E:!] , t = [t. t ,  t.] 
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where f is the focal length, S,  and Sy are the scaling fac- 
tors, q = [ril, ri2, r i3IT,  i = 1 , 2 , 3  are the rotation pa- 
rameters, and t,, t,, and t ,  are the translation parameters, 
respectively. Note that since the 3D rotation can be decom- 
posed into three consecutive rotations around the coordinate 
axes, X ,  Y, and 2 by angles a, p, and y respectively [4], the 
rotation parameters can be written by 

T I 1  = cospcosy 
TI2  = -cospsin7 
~ 1 3  = 

~ 2 1  = sina sinp cosy + cosa siny 
T22 = -sina sinp shy + cosa cosy (2) 
~ 2 3  = - S ~ D ~ C O S ~  

~ 3 1  = -cosa sinp cosy + sina siny 
~ 3 2  = COSQ sinp sin7 + sina cosy 
T33 = sinacosy 

2.3. Initial Guess Algorithm 

Although the system of nonlinear equations in (5) can be 
solved by an iterative nonlinear solver, the optimal solution 
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Fig. 2. Block diagram of the proposed initial guess algo- 
rithm. 

cannot be guaranteed due to the initial value problem. Thus, 
in this work, an accurate and robust initial guess algorithm 
based on a weak perspective projection model and image 
coordinates normalization technique is proposed, so that an 
accurate and stable actual 3D motion parameters can be re- 
covered. 

Fig. 2 shows the overall flow of the proposed initial 
guess algorithm. The first step involves the optical flow ex- 
traction for feature points from the two consecutive images. 
Then, the coordinates of the feature points in each image are 
normalized as follows. 

2 3% .. - - 3'. 3% - xjc, ljji = yji - yjc. (6) 

where xji, yji are the i-th image points (i = 1, . . . , N )  in 
the (j+l)-th image ( j  = 0, l), and sjc, yjc are the mean 
(centroid) of the feature points xji and yji, respectively. 

In the second step, these normalized feature points are 
projected onto each image plane through a weak perspective 
projection such that 

(7) 

where &(i = 0 , l )  is the average depth in (i + 1)-th image, 
and the rotation matrix and the translation vector are defined 

s;[2li G l i  1]T = R ~ O [ O O i  jjoi 1]T + t, 

bY 

T11 f l 2  F13 T I 1  T12 fT13 

R= [& ?2 pZ3] = [ TZ1 TZ2 fTz3] 

T3l  T32 F33 T 3 l / f  T32/f T33 

1 -7 f T 1 3  

(8) 

From (8), we note that the rotational parameters along an 
axis orthogonal to the image plane (Z-axis) in the weak per- 
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Fig. 3. Estimation accuracy. (a) Translation Error, (b) Ro- 
tation Error. 

spective projection is similar to those in the perspective pro- 
jection, so that we can use them as the initial values for 
true rotation. And by corresponding the origins of the two 
normalized coordinates in (8), additional relationships be- 
tween the rotational parameters and translational ones are 
obtained. Thus, by eliminating S O  from the normalized op- 
tical flow and replacing the translational parameters by the 
rotational ones, we can obtain a linear equation written by 

v 50iF11 + B&JiFlZ + 5@&liF11 + - 

i i 5 O i F Z l  + LgoiF22 + f g i F 2 1  + f O i f i O i F 2 2  = 0 (9) 

Once y ( ~ 2 1 ,  or ~ 1 2 )  is determined from (9), a and p can 
also be estimated by (2). Then, by solving ( 5 )  using these 
values, while fixing y and t ,  = 1, we can get the complete 
initial value. 

2.4. 3D Motion Estimation 

Now, let us formulate the solution of the system of nonlinear 
equations in ( 5 )  as the following cost minimization problem. 

Then, the optimal solution can be obtained by Newton-Rhapson 
method 1.51 effectively with the initial value obtained in Sec- 
tion 2.3. The procedure of the proposed algorithm is sum- 
marized in the following: 

1. Set the error range AE, estimate the initial values 
Vo=[tzO, t,o, Q0, P o ,  rolT and fix t,. 

2. Compute v,+~ =vl,+Av using AV, modified New- 
ton step, partial derivative of nonlinear equation (3, 
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Fig. 4. The robustness of noise. (a) Translation Error, (b) 
Rotation Error. 

optical flow ui, vi, and feature points zoi. yoi (i = 
1, ... , A'). 

3. Calculate the evaluation function E (equation (10)) 
using v,+1, optical flow ui,vi and pixel values zoi, 
yoi (i=l,. . . .  A7). 

4. Stop if E < A E ,  otherwise go to step (2) with n = 
n + l .  

3. EXPERIMENTAL RESULTS 

In this section, we have tested the proposed algorithm on 
both synthetic and the real image sequences, and compared 
the results with those of conventional methods [Z, 6,7 ] .  

3.1. Experiment with Synthetic Data 

For this test, we have selected 5 1 arbitrary 3D test points and 
corresponding 2D image points with known camera motion 
parameters. The image size is 256 x 256 and the focal length 
is set to be 477.70. The performance of the proposed 3D 
motion estimation has been evaluated on both noise-free and 
noisy images with the quantization error as well as the mea- 
surement error. First, in noise-free case, although the trans- 
lation and rotation become large, the proposed algorithm 
estimated the motion parameters accurately. Fig. 3 shows 
the L2-norm error of the translation parameters [pixel] and 
the rotation angles [radian], which shows that the estima- 
tion accuracy of the proposed algorithm is superior to that 
of SVD-based method [6].  Next, Fig. 4 shows the perfor- 
mance of the proposed method compared to that of the TLS 
method 171 in noisy environments. White Gaussian mea- 
surement noise and several different levels of quantization 
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error are assumed as in [7]. The results demonstrate that the 
proposed method is more robust to noise than TLS method. 

Proposed 

3.2. Experiment with Real Image Data 

TLS 

In this experiment, the proposed algorithm has been tested 
with real image data, the ”Kitchen” sequence from CMU. 
Table 1 shows the result of the recovered 3D motion pa- 
rameters compared to that of TLS. Note that although the 
ground truth is not known for the real motion, the accu- 
racy of the results can be evaluated by projecting the feature 
points in the reference image onto the second image plane 
using the recovered R and t. The MSE between the true fea- 
ture points and the corresponding projected ones for each 
method is calculated and summarized in table 2. Moreover, 
in order to show the accuracy of the results visually, the ac- 
tual optical flows (black arrows) and the projected optical 
flows (white arrows) are depicted and compared in Fig. 5. 
We see that the recovered optical flows of the proposed al- 
gorithm are quite consistent to the actual ones, while many 
of TLS are not good as indicated in the circles. Thus, from 
these results, we can conclude that the proposed algorithm 
is more robust and accurate than TLS method. 

Error[pixel] I 9.540 

4. CONCLUSION 

21.689 

In this paper, we have presented a new 3D camera motion 
estimation algorithm under a perspective projection. By in- 
troducing a weak perspective projection and a coordinate 
normalization technique, a good initial estimate for the ro- 
tational and translational parameters is obtained for the non- 
linear system of equations of the true 3D motion, resulting 
correct recovery of the actual 3D motion parameters. Ex- 
perimental results demonstrated that the proposed algorithm 
outperforms the conventional methods even in the presence 
of severe quantization and measurement noises. 

Table 1. The estimation of the Kitchen motion : (a) Pro- 
posed algorithm, @) Total Least Squares(TLS) method. 

Parameters 
-0.062 -0.054 

Translation 0.005 
0.998 0.998 

Q 0.014 0.014 
Rotation Axis P 1 0.005 I 0.004 

Y 1 -0.015 I -0.014 

Table 2. Least Mean Square Error, 

@> 
Fig. 5. The comparison of proposed algorithm with TLS 
for extracted optical flow and estimated optical flow.(a) Pro- 
posed algorithm, @) Total Least Squares method. 
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